Global Analysis of Apicomplexan Protein S-Acyl Transferases Reveals an Enzyme Essential for Invasion

نویسندگان

  • Karine Frénal
  • Chwen L Tay
  • Christina Mueller
  • Ellen S Bushell
  • Yonggen Jia
  • Arnault Graindorge
  • Oliver Billker
  • Julian C Rayner
  • Dominique Soldati-Favre
چکیده

The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S-acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp-His-His-Cys cysteine-rich domain (DHHC-CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan-specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranslational maturation of the invasion acyl carrier protein of Salmonella enterica serovar Typhimurium requires an essential phosphopantetheinyl transferase of the fatty acid biosynthesis pathway.

Salmonella pathogenicity island 1 (SPI-1) carries genes required for the formation of a type 3 secretion system, which is necessary for the invasion process of Salmonella. Among the proteins encoded by SPI-1 is IacP, a homolog of acyl carrier proteins. Acyl carrier proteins are mainly involved in fatty acid biosynthesis, and they require posttranslational maturation by addition of a 4'-phosphop...

متن کامل

The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission

The post-translational addition of C-16 long chain fatty acids to protein cysteine residues is catalysed by palmitoyl-S-acyl-transferases (PAT) and affects the affinity of a modified protein for membranes and therefore its subcellular localisation. In apicomplexan parasites this reversible protein modification regulates numerous biological processes and specifically affects cell motility, and i...

متن کامل

Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents

Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD(+) and triclosan and of T. gondii ENR in an ap...

متن کامل

Emerging roles for protein S-palmitoylation in Toxoplasma biology.

Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine ...

متن کامل

Development of 1,2,4-triazole-5-thione derivatives as potential inhibitors of enoyl acyl carrier protein reductase (InhA) in tuberculosis.

Tuberculosis (TB) ranks second, next to AIDS making it most formidable disease if the present age. One of the crucial enzymes involved in cell wall synthesis of Mycobacterium tuberculosis, InhA (enoyl acyl carrier protein reductase) has been authenticated as an effective target for anti-mycobacterial drug development. In the current work, we have developed novel derivatives of 1,2,4-triazole-5-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013